FORECAST-BASED OPERATIONS OF THE YUBA AND FEATHER RIVER SYSTEM

What is it?

Why do it?

How can it be done?

PRESENTATION FOR:

CALIFORNIA COOPERATIVE SNOW SURVEYS PROGRAM

49TH MEETING OF COOPERATORS

NOVEMBER 20, 2003

FOLSOM, CA

Ben Tustison

MBK Engineers

2450 Alhambra Blvd., 2ND Floor

SACRAMENTO, CA 95817

Tel: (916)456-4400

FAX: (916)456-0253

WEB: WWW.MBKENGINEERS.COM

E-MAIL: TUSTISON@MBKENGINEERS.COM

BACKGROUND

FORECAST-BASED OPERATION

FORECAST BASED OPERATION Don't we do this already?

already?

Flood operation during which release decisions (operation) are made based on flow (reservoir inflow, tributary flow) forecasts.

Forecast

Operation

OPERATIONAL COMPARISON

Comparison of current flood operation and FBO

	WY 2004 Operation	Forecast-Based Operation
Basis for Release	Measured Inflow	Inflow Forecast
Drawdown Limit	Bottom of Flood Pool	?
Encroachment	No*	?

Otherwise... operations are the same

CONCEPTUAL GENESIS

- Flood/Conservation interface for most CA reservoirs depends only on seasonality and recent past hydrology
- Allow interface to fluctuate depending on forecast

FLOOD VS. WATER SUPPLY OPERATIONS

SIMILARITIES

- Reservoir inflow forecast is made
- Forecast uncertainty must be understood
- Decisions are made based on forecast

DIFFERENCES

- Runoff mechanism
- Magnitude of uncertainty
- Decision making time scale

FORECAST-BASED OPERATION

HISTORICAL FLOOD DAMAGES

- February 1986 Flood
 - 10,700 acres inundated
 - 4,195 homes & businesses flooded
 - \$95 million in damages
 - 1 life lost

- January 1997 Flood
 - 3 lives lost
 - 100,000 people evacuated
 - 16,000 acres inundated
 - 850 homes and businesses damaged or destroyed

BENEFICIARIES

BENEFICIARIES

FORECAST-BASED OPERATION

STRIKING A BALANCE

- FBO was designed for flood protection enhancement, but it is fully realized that it cannot exist as a "one-way street"
- Water supply and flood control operate counter to one another
- One's benefit is a detriment to the other

FBO CONCEPTS

Forecast-based operation would likely consist of two phases

	ADVANCE RELEASE	REGULATED ENCROACHMENT
DEFINITION	Release water from conservation space when large inflow is forecast	Allow encroachment of flood space when small inflow is forecast
Trigger	Extremely Large Inflow Forecast	Small Inflow Forecast
Beneficiary	Flood Control	Water Supply
EXPECTED FREQUENCY	Once in Multiple Years	Several Times Annually

USE OF FORECASTS

How could forecasts be used to operate?

WEATHER FORECAST

OPERATION

FORECAST VS. ACTUAL

Not quite that simple... consider listing of potential forecast/outcome combinations

PREDICTED RESERVOIR INFLOW

		Small	Large
ACTUAL RESERVOIR INFLOW	all	Operation as usual (FBO not activated)	FBO release too large
	Small		Potential water supply loss
	Large	FBO release too small	FBO release of
		No worse than without FBO	proper magnitude

This risk is inherent but may be outweighed by benefits of regulated encroachment.

INFLUENCING FACTORS

What factors influence effectiveness of FBO?

- Forecast lead-time
- Forecast error
- Available storage space
- Reservoir release capacity
- Downstream flows/targets
- Release rate of change

FLOOD FORECASTING SUMMARY

FLOOD FORECASTING SUMMARY

- Meteorologists predict precipitation and snow level
- California-Nevada River Forecast Center (CNRFC) uses this information to predict river stages downstream

OPERATIONAL FORECASTING

 CNRFC already provides the forecasts needed to perform FBO in the Yuba and Feather system

• Forecast uncertainty must be understood in order to select operational criteria

OPERATIONAL CRITERIA TO CONSIDER

OPERATIONAL PARAMETER SELECTION

Once forecast uncertainty is understood, operational criteria can be selected in terms of ...

OPERATIONAL CHALLENGES

- Multiple reservoirs
- Large unregulated area
- Multiple downstream control points
- Ambiguous flood rules

COORDINATED OPERATION

KNOWLEDGE TRANSFER

- Knowledge of FBO must be taken from idealized modeling to real-time implementation
- Operators must have tools and practice using them

OPERATIONS

APPLICATIONS

FBO STUDIES

- Folsom
- Yuba/Feather
- Shasta

FBO IMPLEMENTATION

- None
 - Relatively new idea
 - Criteria selection needs study
 - Needs <u>comprehensive</u> understanding of impacts
 - Need stakeholder involvement

MERITS

FBO is considered to be a key methodology to enhance California's level of flood protection in the future... why?

- Forecasting advances have made it possible
- Significant addition of new <u>physical</u> flood control space is unlikely in near future
- Can be done with existing facilities It's "free"
- Can be implemented so that it doesn't hurt water supply
- Can be done without significant modification of existing flood rules

